Comparing Traditional and Deep Learning Signal Features for Event Detection in the Utah Region

Author:

Heck Stephen L.1ORCID,Young Christopher J.1ORCID,Brogan Ronald2

Affiliation:

1. 1Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

2. 2ENSCO, Springfield, Virginia, U.S.A.

Abstract

ABSTRACT Advances in deep learning in the past decade have recently been applied to various algorithms in the seismic event monitoring data processing pipeline. In this article, we apply PhaseNet (Zhu and Beroza, 2018)—a deep learning model for seismic signal detection, to backprojection event detection in the Utah region using the Waveform Correlation Event Detection System (WCEDS). We compare PhaseNet-WCEDS with the original short-term average/long-term average (STA/LTA) version of WCEDS from Arrowsmith et al. (2016, 2018). Using the Unconstrained Utah Event Bulletin (Linville et al., 2019) as the “ground truth,” we present the precision and recall for each method for a variety of tuning parameters, with PhaseNet-WCEDS recall being approximately 86%, whereas STA/LTA-WCEDS recall was 66% across a range of detection thresholds. Furthermore, we show that the PhaseNet-WCEDS recall advantage holds across various subregions and event source types in the Utah region. We also introduce a local to near-regional event criteria test that reduces false positives by 55% whereas only reducing true positives by 7% for PhaseNet-WCEDS (60% and 17%, respectively, for STA/LTA-WCEDS). Using the event commonality score (ECS, Draelos et al., 2015), we explore the ECS-based event categories for PhaseNet-WCEDS and STA/LTA-WCEDS for two important subsets of our Utah data set—the Circleville aftershock sequence and events in the central mining region.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3