An efficient method for computing Green's functions for a layered half-space with sources and receivers at close depths

Author:

Hisada Yoshiaki1

Affiliation:

1. Department of Earth Sciences University of Southern California Los Angeles, California 90089-0740

Abstract

Abstract We propose an analytical method to compute efficiently the displacement and stress of static and dynamic Green's functions for viscoelastic layered half-spaces. When source and receiver depths are close, it is difficult to compute Green's functions of the layered half-space, because their integrands, whose variable of integration is the horizontal wavenumber, oscillate with only slowly decreasing amplitude. In particular, when the depths are equal, it is extremely difficult to compute the stress Green's functions, because their integrands oscillate with increasing amplitude. To remedy this problem, we first derive the asymptotic solutions, which converge to the integrands of Green's functions with increasing wavenumber. For this purpose, we modify the generalized R/T (reflection and transmission) coefficient method (Luco and Apsel; 1983) to be completely free from growing exponential terms, which are the obstacles to finding the asymptotic solutions. By subtracting the asymptotic solutions from the integrands of the corresponding Green's functions, we obtain integrands that converge rapidly to zero. We can, therefore, significantly reduce the range of wavenumber integration. Since the asymptotic solutions are expressed by the products of Bessel functions and simple exponential functions, they are analytically integrable. Finally, we obtain accurate Green's functions by adding together numerical and analytical integrations. We first show this asymptotic technique for Green's functions due to point sources, and extend it to Green's functions due to dipole sources. Finally, we demonstrate the validity and efficiency of our method for various cases.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3