SKHASH: A Python Package for Computing Earthquake Focal Mechanisms

Author:

Skoumal Robert J.1ORCID,Hardebeck Jeanne L.1ORCID,Shearer Peter M.2ORCID

Affiliation:

1. 1U.S. Geological Survey, Moffett Field, California, U.S.A.

2. 2University of California, San Diego, La Jolla, California, U.S.A.

Abstract

Abstract We introduce a Python package for computing focal mechanism solutions. This algorithm, which we refer to as SKHASH, is largely based on the HASH algorithm originally written in Fortran over 20 yr ago. HASH innovated the use of suites of solutions, spanning the expected errors in polarities and takeoff angles, to estimate focal mechanism uncertainty. SKHASH benefits from new features with flexible input formats and allows users to take advantage of recent advances in constraining focal mechanisms for small magnitude or poorly recorded earthquakes. The 3D locations of earthquakes and the velocity models used are varied when finding acceptable solutions. As a result, source–receiver azimuths are reflective of errors from the earthquake locations and velocity models, in addition to the takeoff angles. Users can consider weighted P-wave first-motion polarities derived from traditional or machine-learning picks, cross-correlation consensus, and/or imputation techniques using SKHASH. Focal mechanism solutions can also be further constrained using traditional, machine learning, and/or cross-correlation consensus S/P amplitude ratios. With improved reporting of individual and collective P polarity and S/P amplitude misfits, users can better evaluate the success of the solutions and the quality of the measurements. The reporting also makes it easier to identify potential issues with metadata, including incorrectly reported station polarity reversals. In addition, by leveraging vectorized operations, taking advantage of an efficient backend Python C Application Programming Interface, and the use of a parallel environment, the Python SKHASH routine may compute mechanisms quicker than the HASH routine.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3