Spectral Inversion for Seismic Site Response in Central Oklahoma: Low-Frequency Resonances from the Great Unconformity

Author:

Moschetti Morgan P.1,Hartzell Stephen H.1

Affiliation:

1. U.S. Geological Survey, Denver, Colorado, U.S.A.

Abstract

ABSTRACT We investigate seismic site response by inverting seismic ground-motion spectra for site and source spectral properties, in a region of central Oklahoma, where previous ground-motion studies have indicated discrepancies between observations and ground-motion models (GMMs). The inversion is constrained by a source spectral model, which we computed from regional seismic records, using aftershocks as empirical Green’s functions to deconvolve site and path effects. Site spectra across the region exhibit multiple, strong, low-frequency (f<2  Hz) resonances. Modeling of vertically propagating SH waves reproduces the mean amplitudes and frequencies of the site spectra and requires a deep (∼1–2  km) impedance contrast. Comparison of regional seismic velocity models and geologic profiles indicates that the seismic impedance contrast is, or is in proximity to, the Great Unconformity, which marks the interface between Precambrian basement rocks and overlying Paleozoic sedimentary rocks. Depth to Precambrian basement increases to the southwest across the study region (∼1500–4500  m), and the fundamental frequencies of the site spectra are anticorrelated with basement depth. The first higher-mode resonance also exhibits dependence on basement depth; although modeling suggests that the second higher mode should depend on basement depth, site spectra do not support this. The low-frequency resonances in central Oklahoma are not represented in the GMMs used in current seismic hazard analyses for tectonic earthquakes, though approaches to account for such features are under consideration in other regions of the central and eastern United States. Given the broad spatial extent of the Great Unconformity underlying eastern North America, it is likely that similar effects on seismic site response also occur in other areas. This study highlights the impact of regional geologic structure on earthquake ground motions and reiterates the need for modeling regional effects to improve ground-motion predictions and seismic hazard assessments.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3