Stability of the Fault Systems That Host-Induced Earthquakes in the Delaware Basin of West Texas and Southeast New Mexico

Author:

Hennings Peter1ORCID,Dvory Noam2ORCID,Horne Elizabeth1ORCID,Li Peng1ORCID,Savvaidis Alexandros1ORCID,Zoback Mark2ORCID

Affiliation:

1. Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, U.S.A.

2. Department of Geophysics, Stanford University, Stanford, California, U.S.A.

Abstract

Abstract The Delaware basin of west Texas and southeast New Mexico has experienced elevated earthquake rates linked spatiotemporally to unconventional petroleum operations. Limited knowledge of subsurface faults, the in situ geomechanical state, and the exact way in which petroleum operations have affected pore pressure (Pp) and stress state at depth makes causative assessment difficult, and the actions required for mitigation uncertain. To advance both goals, we integrate comprehensive regional fault interpretations, deterministic fault-slip potential (DFSP), and multiple earthquake catalogs to assess specifically how faults of two systems—deeper basement-rooted (BR) and shallow normal (SN)—can be made to slip as Pp is elevated. In their natural state, the overall population faults in both the systems have relatively stable DFSP, which explains the low earthquake rate prior to human inducement. BR faults with naturally unstable DFSP and associated earthquake sequences are few but include the Culberson–Mentone earthquake zone, which is near areas of wastewater injection into strata above basement. As a system, the SN faults in the southcentral Delaware basin are uniformly susceptible to slip with small increases in Pp. Many earthquakes sequences have occurred along these shallow faults in association with elevated Pp from shallow wastewater injection and hydraulic fracturing. Our new maps and methods can be used to better plan and regulate petroleum operations to avoid fault rupture.

Publisher

Seismological Society of America (SSA)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3