Ambient Noise Level in Eastern North China from ChinArray and Its Response to COVID-19

Author:

Wang Weilai1,Cai Guangyao1,Lai Guijuan1,Chen Mingfei1,Zhang Long1ORCID

Affiliation:

1. Institute of Geophysics, China Earthquake Administration, Beijing, China

Abstract

Abstract High-frequency (>1  Hz) ambient noise is usually closely related to anthropogenic activities. During the outbreak and spread of the COVID-19, as various anthropogenic activities are restricted, high-frequency ambient noise level has been observed to be reduced on a worldwide scale. The continuous waveform data at dense broadband seismic stations from ChinArray in eastern North China provides a good opportunity to study the temporal and spatial patterns of the ambient noise level in the region, and to further study the influencing factors, such as the topography and the population density. In this study, we calculated the average power spectral density of ambient noise at each station ±90 days around the Spring Festival in 2019 and in 2020, analyzed the noise level at different stations through normal times, Spring Festivals, epidemic control period, and recovery period, and studied the influencing factors of the noise level. We found that normally high-frequency (1–10 Hz) ambient noise correlates well with the surrounding sedimentary thickness: The noise level is higher when the surrounding sedimentary layer is thicker and vice versa. It correlates moderately with local population density and is time-varying due to anthropogenic activities. During the Spring Festival in 2019 and in 2020, and the epidemic control period after the Spring Festival in 2020, the reduction extent of the noise level correlates moderately with both the sedimentary thickness and population density; the ambient noise level reduces more significantly to the south of 40° N than to the north of it in the study region. Considering that the sedimentary thickness beneath each station is not time-varying, the variation in ambient noise level due to anthropogenic activities is clearly amplified by the sedimentary layer.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3