Remote Triggering of Icequakes at Mt. Erebus, Antarctica by Large Teleseismic Earthquakes

Author:

Li Chenyu1ORCID,Peng Zhigang1,Chaput Julien A.2,Walter Jacob I.3ORCID,Aster Richard C.4ORCID

Affiliation:

1. School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, U.S.A.

2. Department of Geological Sciences, University of Texas at El Paso, El Paso, Texas, U.S.A.

3. Oklahoma Geological Survey, University of Oklahoma, Norman, Oklahoma, U.S.A.

4. Department of Geosciences and Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado, U.S.A.

Abstract

Abstract Recent studies have shown that the Antarctic cryosphere is sensitive to external disturbances such as tidal stresses or dynamic stresses from remote large earthquakes. In this study, we systematically examine evidence of remotely triggered microseismicity around Mount (Mt.) Erebus, an active high elevation stratovolcano located on Ross Island, Antarctica. We detect microearthquakes recorded by multiple stations from the Mt. Erebus Volcano Observatory Seismic Network one day before and after 43 large teleseismic earthquakes, and find that seven large earthquakes (including the 2010 Mw 8.8 Maule, Chile, and 2012 Mw 8.6 Indian Ocean events) triggered local seismicity on the volcano, with most triggered events occurring during the passage of the shorter-period Rayleigh waves. In addition, their waveforms and locations for the triggered events are different when comparing with seismic events arising from the persistent small-scale eruptions, but similar to other detected events before and after the mainshocks. Based on the waveform characteristics and their locations, we infer that these triggered events are likely shallow icequakes triggered by dilatational stress perturbations from teleseismic surface waves. We show that teleseismic earthquakes with higher peak dynamic stress changes are more capable of triggering icequakes at Mt. Erebus. We also find that the icequakes in this study are more likely to be triggered during the austral summer months. Our study motivates the continued monitoring of Mount Erebus with dense seismic instrumentation to better understand interactions between dynamic seismic triggering, crospheric processes, and volcanic activity.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3