Regulation of cartilage glycosaminoglycan synthesis in the rainbow trout, Oncorhynchus mykiss, by 3,3′,5-tri-iodo-l-thyronine and IGF-I

Author:

Takagi Y,Th Björnsson B

Abstract

Abstract The actions of 3,3′,5-tri-iodo-l-thyronine (T3) and recombinant human IGF-I (rhIGF-I) as well as their interaction on cartilage growth in rainbow trout (Oncorhynchus mykiss) were examined. Uptake of 3H-methyl thymidine and 35S-sulfate by isolated branchial cartilage was measured as a marker for chondrocyte proliferation and sulfated glycosaminoglycan synthesis respectively. When T3 (1·0 μg/g) was injected intraperitoneally, plasma T3 levels reached a transient peak after 1 day and decreased rapidly thereafter. Sulfate and thymidine uptake were not affected by T3 at 1 and 3 days post-injection, but at 6 days post-injection both were significantly higher in T3injected fish than those in controls. The stimulatory effects of a T3 injection on sulfate and thymidine uptake were dose-dependent over the range of 0·01, 0·1 and 1·0 μg/g. In vitro exposure of cartilage to T3 (0·075, 0·75, 7·5, 75 and 750 nm) for 6 days resulted in dose-dependent stimulation of sulfate uptake, with a maximum response at 7·5 nm and higher. T3 exposure (7·5 nm) for 2 or 3 days also increased sulfate uptake, but only slightly. Thymidine uptake was not clearly affected by T3. In vitro addition of rhIGF-I (0·075, 0·75 and 7·5 nm) increased sulfate uptake, but not thymidine uptake, dose-dependently. Compared with T3, rhIGF-I induced a greater maximum level of sulfate uptake: at 7·5 nm rhIGF-I increased the uptake 17-fold whereas T3 increased the uptake fourfold. When T3 (0·075, 0·75 or 7·5 nm) and rhIGF-I (0·1 or 1·0 nm) were added together, stimulative actions of T3 on sulfate uptake were largely additive to those of rhIGF-I. The results indicate that T3 as well as IGF-I are important modulators of sulfated glycosaminoglycan synthesis in rainbow trout cartilage. Journal of Endocrinology (1996) 149, 357–365

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3