Insulin-mediated activation of activator protein-1 through the mitogen-activated protein kinase pathway stimulates collagenase-1 gene transcription in the MES 13 mesangial cell line

Author:

Ayala JE,Boustead JN,Chapman SC,Svitek CA,Oeser JK,Robey RB,O'Brien RM

Abstract

The initial stages of diabetic nephropathy are characterized, in part, by expansion of the mesangial matrix and thickening of the glomerular basement membrane which are caused by increased extracellular matrix (ECM) protein synthesis and reduced degradation, a consequence of decreased matrix metalloproteinase (MMP) activity. These changes have been largely attributed to the effects of hyperglycemia such that the potential contribution of impaired insulin action to alterations in the ECM have not been studied in detail. We have shown here that insulin stimulates collagenase-1 fusion gene transcription in the MES 13 mesangial-derived cell line. Multiple collagenase-1 promoter elements are required for the full stimulatory effect of insulin but the action of insulin appears to be mediated through an activator protein-1 (AP-1) motif. Thus, mutation of this AP-1 motif abolishes insulin-stimulated collagenase fusion gene transcription and, in isolation, this AP-1 motif can mediate a stimulatory effect of insulin on the expression of a heterologous fusion gene. This suggested that the other collagenase-1 promoter elements that are required for the full stimulatory effect of insulin probably bind accessory factors that enhance the effect of insulin mediated through the AP-1 motif. In MES 13 cells, the AP-1 motif is bound by Fra-1, Fra-2, Jun B and Jun D. Stimulation of collagenase-1 fusion gene transcription by insulin requires activation of the mitogen-activated protein kinase (MEK) pathway since inhibition of MEK-1 and -2 blocks this effect. The potential significance of these observations with respect to a role for insulin in the pathophysiology of diabetic glomerulosclerosis is discussed.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3