Author:
Jack John,Wambaugh John F,Shah Imran
Abstract
Abstract
Background
With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data.
Results
We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature.
Conclusion
A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a) using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b) with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our results suggest that this approach is both quantitative, allowing statistical verification and calibration, and extensible, allowing modification and revision as guided by experimental evidence. The simulation methodology is part of the US EPA Virtual Liver, which is investigating the effects of everyday contaminants on living tissues. Future models will incorporate additional crosstalk surrounding proliferation as well as the putative effects of xenobiotics on these signaling cascades within hepatocytes.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Reference53 articles.
1. Andersen ME, Krewski D: Toxicity Testing in the 21st Century: Bringing the Vision to Life. Toxicological Sciences. 2009, 107: 324-330.
2. Holsapple MP, Afshari CA, Lehman-McKeeman LD: Forum Series: The "Vision" for Toxicity Testing in the 21st Century: Promises and Conundrums. Toxicological Sciences. 2009, 107: 307-308.
3. White RH, Cote I, Zeise L, Fox M, Dominici F, Burke TA, White PD, Hattis DB, Samet JM: State-of-the-Science Workshop Report: Issues and Approaches in Low-Dose-Response Extrapolation for Environmental Health Risk Assessment. Environ Health Perspect. 2008, 117:
4. De Rosa C, El-Masri H, Pohl H, Cibulas W, Mumtaz M: Implications of Chemical Mixtures in Public Health Practice. Journal of Toxicology and Environmental Health Part B: Critical Reviews. 2004, 7: 339-350. 10.1080/10937400490498075.
5. Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, Moller DE, Zhou G: Differential Gene Regulation in Human Versus Rodent Hepatocytes by Peroxisome Proliferator-activated Receptor (PPAR) α. Journal of Biological Chemistry. 2001, 276: 31521-31527. 10.1074/jbc.M103306200
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献