The cAMP signaling system regulates LHbeta gene expression: roles of early growth response protein-1, SP1 and steroidogenic factor-1

Author:

Horton CD,Halvorson LM

Abstract

Expression of the gonadotropin genes has been shown to be modulated by pharmacological or physiological activators of both the protein kinase C (PKC) and the cAMP second messenger signaling pathways. Over the past few years, a substantial amount of progress has been made in the identification and characterization of the transcription factors and cognate cis-elements which mediate the PKC response in the LH beta-subunit (LHbeta) gene. In contrast, little is known regarding the molecular mechanisms which mediate cAMP-mediated regulation of this gene. Using pituitary cell lines, we now demonstrate that rat LHbeta gene promoter activity is stimulated following activation of the cAMP system by the adenylate cyclase activating agent, forskolin, or by the peptide, pituitary adenylate cyclase-activating peptide. The forskolin response was eliminated with mutation of a previously identified 3' cis-acting element for the early growth response protein-1 (Egr-1) when evaluated in the context of region -207/+5 of the LHbeta gene. Activation of the cAMP system increased Egr-1 gene promoter activity, Egr-1 protein levels and Egr-1 binding to the LHbeta gene promoter, supporting the role of this transcription factor in mediating the cAMP response. Analysis of a longer LHbeta promoter construct (-797/+5) revealed additional contribution by upstream Sp1 DNA-regulatory regions. Of interest, forskolin-induced stimulation of LHbeta gene promoter activity was observed to increase synergistically with introduction of the transcription factor, steroidogenic factor-1 (SF-1). Although SF-1 is a critical mediator of the cAMP response in other genes, mutation of the SF-1 DNA-binding sites in the rat LHbeta gene did not alter the forskolin response nor did forskolin increase SF-1 protein levels in a gonadotrope cell line. In a further set of experiments, it was determined that forskolin-responsiveness was maintained following mutation of the previously defined homeobox-binding element at position -100. We conclude that both Egr-1 and Sp1 contribute to cAMP-dependent transcription of the rat LHbeta gene promoter. While SF-1 does not act independently to mediate the cAMP/PKA response, SF-1 is important for magnification of this response.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3