Author:
Elton CW,Pennington JS,Lynch SA,Carver FM,Pennington SN
Abstract
Maternal diet during pregnancy has been reported to alter the offspring's ability to respond to a glucose challenge. The current studies report changes in basal and insulin-stimulated, in vitro glucose uptake in red (soleus) and white (extensor digitorum longus) muscle fiber types, as well as whole body insulin responsiveness of adult rat offspring associated with their mother's dietary fat and alcohol content during pregnancy. The offspring of Harlan-derived Sprague-Dawley female rats, dosed during pregnancy with ethanol (ETOH) via a liquid diet (35% of calories as ETOH) with either 12% or 35% of calories as fat, were compared with offspring from litters whose mothers were pair-fed an isocaloric amount of the liquid diet without ETOH. Maternal access to the liquid diets was terminated on day 20 of the pregnancies (sperm plug=day 0). The offspring were surrogate fostered within 48 h of birth to mothers which had consumed commercial chow throughout their pregnancy. Following weaning at 21 days of age, the offspring consumed only commercial rat chow and they were examined over the next 14 months for changes in glucose homeostasis as a consequence of in utero exposure to maternal dietary fat and/or alcohol. The 35% maternal fat diet resulted in both in vivo and in vitro decreases in insulin sensitivity. Thus, compared with adults whose mother's diet contained 12% fat, significant, in vitro muscle and in vivo whole body insulin resistance (measured by hyperinsulinemic-euglycemic clamping) was observed in adult rats whose mothers consumed 35% of dietary calories as fat. The addition of ethanol to the maternal 35% fat diet further reduced the offspring's red muscle tissues in vitro response to insulin, but did not affect whole body insulin sensitivity. Muscle basal and insulin-stimulated receptor tyrosine kinase activity were significantly decreased (approximately -50%) by the 35% fat maternal diet but there was no compensatory increase in serum insulin or glucose levels. Based upon both in vivo and in vitro data, these studies suggested that in utero exposure to 35% fat has a sustained effect on the adult offspring's glucose uptake/insulin sensitivity and that the effect is paralleled, at least in part, by decreased insulin receptor tyrosine kinase activity. In utero ETOH exposure resulted in the loss of basal and insulin-stimulated, in vitro glucose uptake in red muscle fibers but maternal dietary ETOH had no detectable effect on either in vivo insulin sensitivity or muscle tyrosine kinase activity.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献