Effects of chronic bromocriptine (CB-154) treatment on the plasma glucose and insulin secretion response to neurocytoglucopenia in rats

Author:

Ribeiro-de-Oliveira A,Guerra RM,Foscolo RB,Marubayashi U,Reis AM,Coimbra CC

Abstract

Neurocytoglucopenia has been reported to increase both parasympathetic and sympathetic tone with a predominant effect on the latter, which accounts for the major effect of plasma hyperglycemia and the inhibition of insulin secretion. The aim of this study was to determine the effects of chronic treatment with bromocriptine (0.4 mg/100 g body wt per day), a potent sympatholytic D(2)-dopaminergic agonist, on hyperglycemia and insulin secretion in response to neurocytoglucopenia induced by 2-deoxy-d-glucose (2DG). After 2 weeks of bromocriptine treatment the animals, freely moving in their cages, were submitted to 2DG administration (50 mg/100 g body wt) via atrial catheter infusion. After 2DG infusion, the plasma prolactin of vehicle-treated (VEH) rats increased rapidly, reaching a peak at 10 min (34.3+/-7.6 ng/ml; P<0.01). In contrast, 2DG infusion failed to induce any significant change in the plasma prolactin levels of bromocriptine-treated (BR) rats. BR rats showed higher resting glucose levels than control rats (8.2+/-0.28 mM (BR) vs 6.0+/-0.18 mM (VEH); P<0.01). However, the hyperglycemic response of BR rats to 2DG injection was 30% lower than that of VEH rats (P<0.05). BR rats also showed a rapid rise in plasma insulin levels reaching a peak at 30 min after 2DG injection (243% higher than basal values; P<0.01). This increased rise in the insulin response to neurocytoglucopenia of BR rats was blocked by previous intravenous injection of atropine methyl nitrate (0.2 mg/100 g body wt). The present results suggest that chronic treatment with bromocriptine determines a strong increase in the parasympathetic tone response to neurocytoglucopenia, which is responsible for the higher stimulation of insulin secretion observed in BR rats. The data also provide further evidence that D(2)-dopaminergic agonist can block neurocytoglucopenia-induced prolactin release.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3