Hyperglycemia- and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts

Author:

Fang X,Palanivel R,Zhou X,Liu Y,Xu A,Wang Y,Sweeney G

Abstract

Adiponectin has been shown to regulate glucose and fatty acid uptake and metabolism in skeletal muscle. Here we investigated the role of the recently cloned adiponectin receptor (AdipoR) isoforms in mediating effects of both globular (gAd) and full-length (fAd) adiponectin, and their regulation by hyperglycemia (25 mM, 20 h) and hyperinsulinemia (100 nM, 20 h). We used L6 rat skeletal muscle cells, which were found to express both AdipoR1 and AdipoR2 mRNA in a ratio of over 6:1 respectively. Hyperglycemia and hyperinsulinemia both decreased AdipoR1 receptor expression by approximately 50%, while the latter induced an increase of approximately threefold in AdipoR2 expression. The ability of gAd to increase GLUT4 myc translocation, glucose uptake, fatty acid uptake and oxidation, as well as AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, was decreased by both hyperglycemia and hyperinsulinemia. Interestingly, hyperinsulinemia induced the ability of fAd to elicit fatty acid uptake and enhanced fatty acid oxidation in response to fAd. In summary, our results suggest that both hyperglycemia and hyperinsulinemia cause gAd resistance in rat skeletal muscle cells. However, hyperinsulinemia induces a switch toward increased fAd sensitivity in these cells.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3