Adiponectin stimulates glucose uptake in mouse blastocysts and embryonic carcinoma cells

Author:

Burkuš J1,Navarrete Santos A2,Schindler M2,Babeľová J1,Jung J S2,Špirková A1,Kšiňanová M1,Kovaříková V1,Fischer B2,Koppel J1,Fabian D1,Čikoš Š1

Affiliation:

1. 1Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovakia

2. 2Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle Wittenberg, Halle, Saale, Germany

Abstract

Preimplantation embryos are sensitive to maternal hormones affecting embryonic signal transduction and metabolic functions. We examined whether adiponectin, the most abundantly secreted adipokine, can influence glucose transport in mouse embryonic cells. In mouse blastocysts full-length adiponectin stimulated glucose uptake, while no effect of globular adiponectin was found. Full-length adiponectin stimulated translocation of GLUT8 glucose transporter to the cell membrane; we did not detect significant changes in the intracellular localization of GLUT4 glucose transporter in adiponectin-treated blastocysts. To study adiponectin signaling in detail, we used embryoid bodies formed from mouse embryonic carcinoma cell (ECC) line P19. We confirmed the expression of adiponectin receptors in these cells. Similar to mouse blastocysts, full-length adiponectin, but not globular adiponectin, stimulated glucose uptake in ECC P19 embryoid bodies. Moreover, full-length adiponectin stimulated AMPK and p38 MAPK phosphorylation. These results indicate that besides AMPK, p38 MAPK is a potential target of adiponectin in mouse embryonic cells. AMPK inhibitor did not influence the adiponectin-stimulated p38 MAPK phosphorylation, indicating independent action of these two signaling pathways. In mouse embryos adiponectin acts as a hormonal regulator of glucose uptake, which becomes especially important in phases with reduced levels of circulating insulin. Our results suggest that adiponectin maintains the glucose supply for early embryos under hypoinsulinaemic conditions, for example, in mothers suffering from type 1 diabetes mellitus.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3