Novel protein kinase C-epsilon inhibits human CYP11B2 gene expression through ERK1/2 signalling pathway and JunB

Author:

LeHoux Jean-Guy,Lefebvre Andrée

Abstract

We previously reported that H295R cells co-express three diacylglycerol (DAG)-dependent protein kinase Cs (PKCs), namely conventional (c) PKCα and novel (n) PKCε and PKCϑ. The aim of the present work was to evaluate the implication of DAG-dependent PKCs in the activation of p44/42 MAP kinase (MAPK) by angiotensin II (Ang II) and to define the role of this pathway towards CYP11B2 regulation in H295R cells. The PKC inhibitor bisindolylmaleimide 1 (Bis) inhibited Ang II-induced p44/42 MAPK phosphorylation whereas the cPKC inhibitor Gö6976 failed to do so, thus ruling out the participation of PKCα. Ang II activated nPKCε and did not affect nPKCϑ, pinpointing PKCε as the mediator of Ang II in p44/42 MAPK activation. Overexpression of wild-type ERK1 and ERK2 significantly reduced basal as well as Ang II-stimulated human -2023CYP11B2-CAT activity; conversely, the two dominant negative mutants increased them. Overexpression of constitutively active (ca) PKCsuppressed Ang II-induced -2023CYP11B2-CAT activity. Infection of H295R cells with adenoviruses (Adv) expressing caPKCε activated endogenous MEK1/2 and p44/42 MAPK. Adv-caPKCε inhibited Ang II-stimulated aldosterone synthase mRNA levels and this action was reversed by the MEK1 inhibitor, PD98059. Also, Ang II increased JunB protein levels and this effect was inhibited by PD98059 and Bis. Adv-caPKCε enhanced JunB protein levels and PD98059 attenuated the increase. JunB overexpression abolished the Ang II-induced promoter activity within -138 bp of the 5′-flanking region of CYP11B2. Collectively, these results demonstrate that PKCε inhibits CYP11B2 transcription through the p44/42 MAPK pathway and JunB in H295R cells.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3