Effect of glucocorticoids on α1-adrenergic receptor binding in rat vascular smooth muscle

Author:

Haigh R. M.,Jones C. T.

Abstract

ABSTRACT Glucocorticoids are known to have marked effects on blood pressure regulation, predominantly through altering cardiovascular sensitivity to noradrenaline. However, the molecular mechanisms underlying this action remain unclear. As part of our studies into these we have measured α1-adrenergic receptor binding using the ligand [3H]prazosin in plasma membrane fractions of aortas prepared from control, adrenalectomized and dexamethasone-treated adrenalectomized rats. In controls there were 50±8 (s.e.m.; n=6) fmol α1-adrenergic receptors/mg membrane protein (Bmax) with a dissociation constant (Kd) of 0·52±0·10 nm (n=6). Adrenalectomy 8 days before tissue preparation caused a 40% decrease in Bmax and a 60% decrease in Kd. Dexamethasone replacement after adrenalectomy returned these values close to those of controls. Noradrenaline competed for the [3H]prazosin-binding sites. Computer analysis by a non-linear curve-fitting program (LIGAND) showed that noradrenaline binding was to a heterogeneous population of high- and low-affinity receptors with Kd values of 1·87±0·73 μm and 0·48±0·12 mm (n=5) respectively. Guanosine thiotriphosphate (GTP[S]) caused the conversion of high-affinity to low-affinity binding, consistent with the model of the high-affinity sites being coupled to a G protein. After adrenalectomy, noradrenaline binding was to a homogeneous population of low-affinity receptors; hence, the effect of GTP[S] was no longer apparent, suggesting that under these conditions the α1-adrenergic receptors were unable to couple to a G protein. The two-site model of binding and GTP[S] effect was returned by dexamethasone treatment. These data provide evidence that glucocorticoids not only modulate the number of α1-adrenergic receptors on vascular smooth muscle, but also cause disruptions in receptor—G protein coupling. This may be an important mechanism by which glucocorticoids exert their effect on cardiovascular sensitivity.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3