Locus Coeruleus Noradrenergic Modulation of Diurnal Corticosterone, Stress Reactivity and Cardiovascular Homeostasis in Male Rats

Author:

Thrivikraman K.V.,Kinkead Becky,Owens Michael J.,Rapaport Mark H.,Plotsky Paul M.

Abstract

Introduction: Activation of the locus coeruleus-noradrenergic (LC-NA) system during awakening is associated with an increase in plasma corticosterone and cardiovascular tone. These studies evaluate the role of the LC in this corticosterone and cardiovascular response. Methods: Male rats, on day 0, were treated IP with either DSP4 (50 mg/ kg body weight) (DSP), a LC-NA specific neurotoxin, or normal saline (SAL). On day 10, animals were surgically prepared with jugular vein [Hypothalamic–pituitary–adrenal (HPA) axis] or carotid artery (hemodynamics) catheters and experiments performed on day 14. HPA axis activity, diurnally (circadian) and after stress [transient hemorrhage (14 mL/kg body weight) or airpuff-startle], and basal and post-hemorrhage hemodynamics were evaluated. On day 16, brain regions from a subset of rats were dissected for norepinephrine and corticotropin-releasing factor (CRF) assay. Results: In DSP rats compared to SAL rats: 1) regional brain norepinephrine was decreased but there was no change in median eminence or olfactory bulb CRF content; 2) during HPA axis acrophase, the plasma corticosterone response was blunted; 3) after hemorrhage and airpuff-startle, the plasma adrenocorticotropic hormone response was attenuated, whereas the corticosterone response was dependent on stressor category; 4) under basal conditions, hemodynamic measures exhibited altered blood flow dynamics and systemic vasodilation; and 5) after hemorrhage, hemodynamics exhibited asynchronous responses. Conclusion: LC-NA modulation of diurnal and stress-induced HPA axis reactivity occurs via distinct neurocircuits. The integrity of the LC-NA system is important to maintain blood flow dynamics. The importance of increases in plasma corticosterone at acrophase to maintain short- and long-term cardiovascular homeostasis is discussed.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3