Reactive oxygen species blockade and action of insulin on expression of angiotensinogen gene in proximal tubular cells

Author:

Hsieh Tusty-Jiuan,Fustier Pierre,Wei Chih-Chang,Zhang Shao-Ling,Filep Janos G,Tang Shiow-Shiu,Ingelfinger Julie R,Fantus I George,Hamet Pavel,Chan John S D

Abstract

We reported previously that insulin inhibits the stimulatory effect of high glucose on the expression of angiotensinogen (ANG) gene in both rat immortalized renal proximal tubular cells (IRPTCs) and non-diabetic rat renal proximal tubular cells (RPTCs), but has no effect in diabetic rat RPTCs. In the present study we investigated whether hyperglycaemia-induced resistance to the insulin-induced inhibition of expression of the ANG gene is mediated via the generation of reactive oxygen species (ROS) in RPTCs. Rat IRPTCs were cultured for 2 weeks in high-glucose (25 mM) or normal-glucose (5 mM) medium plus angiotensin II (Ang II) with or without a superoxide scavenger (tiron), or inhibitors of: NADPH oxidase (diphenylene iodinium, DPI), Ang II type 1 and 2 receptors (losartan and PD123319), angiotensin-converting enzyme (perindopril), protein kinase C (GF 109203X), or glutamine:fructose-6-phosphate amino-transferase (azaserine). Cellular generation of ROS, and ANG and renin mRNA levels were assessed by lucigenin assay and specific reverse transcriptase-PCR respectively. Phosphorylation of p44/42 mitogen-activated protein kinase (p44/42 MAPK) was evaluated by western blotting. Prolonged exposure of IRPTCs to high concentrations of glucose or Ang II evoked generation of ROS and resistance to the insulin-induced inhibition of expression of the ANG gene and of p44/42 MAPK phosphorylation. Co-incubation of IRPTCs with tiron, DPI, losartan, PD123319, perindopril, GF 109203X or azaserine prevented ROS generation, restoring the inhibitory action of insulin on ANG gene expression and on p44/42 MAPK phosphorylation. In conclusion, our studies demonstrate that blockade of both ROS generation and activation of the intrarenal renin–angiotensin system improves the inhibitory action of insulin on ANG gene expression in IRPTCs in conditions of high glucose.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3