Immunosuppression by Mycophenolate Mofetil Mitigates Intrarenal Angiotensinogen Augmentation in Angiotensin II-Dependent Hypertension

Author:

Satou Ryousuke,Franco MarthaORCID,Dugas Courtney M.,Katsurada Akemi,Navar L. GabrielORCID

Abstract

Augmentation of intrarenal angiotensinogen (AGT) leads to further formation of intrarenal angiotensin II (Ang II) and the development of hypertensive kidney injury. Recent studies demonstrated that macrophages and the enhanced production of pro-inflammatory cytokines can be crucial mediators of renal AGT augmentation in hypertension. Accordingly, this study investigated the effects of immunosuppression by mycophenolate mofetil (MMF) on intrarenal AGT augmentation. Ang II (80 ng/min) was infused with or without daily administration of MMF (50 mg/kg) to Sprague-Dawley rats for 2 weeks. Mean arterial pressure (MAP) in Ang II infused rats was slightly higher (169.7 ± 6.1 mmHg) than the Ang II + MMF group (154.7 ± 2.0 mmHg), but was not statistically different from the Ang II + MMF group. MMF treatment suppressed Ang II-induced renal macrophages and IL-6 elevation. Augmentation of urinary AGT by Ang II infusion was attenuated by MMF treatment (control: 89.3 ± 25.2, Ang II: 1194 ± 305.1, and Ang II + MMF: 389 ± 192.0 ng/day). The augmentation of urinary AGT by Ang II infusion was observed before the onset of proteinuria. Elevated intrarenal AGT mRNA and protein levels in Ang II infused rats were also normalized by the MMF treatment (AGT mRNA, Ang II: 2.5 ± 0.2 and Ang II + MMF: 1.5 ± 0.1, ratio to control). Ang II-induced proteinuria, mesangial expansion and renal tubulointerstitial fibrosis were attenuated by MMF. Furthermore, MMF treatment attenuated the augmentation of intrarenal NLRP3 mRNA, a component of inflammasome. These results indicate that stimulated cytokine production in macrophages contributes to intrarenal AGT augmentation in Ang II-dependent hypertension, which leads to the development of kidney injury.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3