Spatial distribution of growth hormone receptor, insulin-like growth factor-I receptor and apoptotic chondrocytes during growth plate development

Author:

Cruickshank J,Grossman D I,Peng R K,Famula T R,Oberbauer A M

Abstract

Linear bone growth depends upon proliferation, maturation, and apoptosis of growth plate chondrocytes, processes regulated by growth hormone (GH) and insulin-like growth factor-I (IGF-I). To investigate the contribution of GH, IGF-I and apoptosis to growth plate function, the expression of GH receptor (GHR) and IGF-I receptor (IGF-IR) mRNA were evaluated by in situ hybridization in fractionated costochondral growth plates of growing rats (at 2, 4, and 7 weeks). Apoptosis was determined by TUNEL assay and morphology in histological sections. GHR mRNA was greatest in resting cells with hypertropic cells increasing GHR expression with increasing age. Hypertropic and resting cell IGF-IR mRNA declined over the ages studied. Receptor mRNA expression was altered by exposing cells to GH or IGF-I. GH and IGF significantly decreased GHR mRNA in proliferative cells. GH and IGF also decreased IGF-IR mRNA in resting cells and the 2- and 4-week-old proliferative and hypertropic cells. Treating cells in culture with GH increased the number of apoptotic cells across all ages and zones. Histologically, apoptotic cells were observed at the chondro-osseous junction and within actively proliferating chondrocytes but not in resting cells. Apoptosis was highest at 4 weeks of age with lateral regions displaying the greatest number of cells undergoing apoptosis. These data indicate that apoptosis plays a role in growth plate function, particularly spatial configuration as indicated by the preferential lateral cell apoptosis. The susceptibility of proliferative cells to GHR and IGF-IR down regulation during the period of greatest apoptosis supports a role for the GH–IGF axis in both proliferation and apoptosis during growth plate development.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3