A Whey-Based Diet Can Ameliorate the Effects of LPS-Induced Growth Attenuation in Young Rats

Author:

Menahem Chen1,Foist Michal1,Mansour Yasmin2,Shtaif Biana13,Bar-Maisels Meytal23,Phillip Moshe123,Gat-Yablonski Galia123

Affiliation:

1. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel

2. The Jesse Z. and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel

3. Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva 4920235, Israel

Abstract

Chronic inflammation in childhood is associated with impaired growth. In the current study, a lipopolysaccharide (LPS) model of inflammation in young rats was used to study the efficacy of whey-based as compared to soy-based diets to ameliorate growth attenuation. Young rats were injected with LPS and fed normal chow or diets containing whey or soy as the sole protein source during treatment, or during the recovery period in a separate set of experiments. The body and spleen weight, food consumption, humerus length, and EGP height and structure were evaluated. Inflammatory markers in the spleen and markers of differentiation in the EGP were assessed using qPCR. The LPS led to a significant increase in the spleen weight and a decrease in the EGP height. Whey, but not soy, protected the animals from both effects. In the recovery model, whey led to increased EGP height at both 3 and 16 d post treatment. The most affected region in the EGP was the hypertrophic zone (HZ), which was significantly shortened by the LPS treatment but enlarged by whey. In conclusion, LPS affected the spleen weight and EGP height and had a specific effect on the HZ. Nutrition with whey protein appeared to protect the rats from the LPS-induced growth attenuation.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3