Author:
Keser Gaye, ,Bayrakdar Ibrahim Sevki,Pekiner Filiz Namdar,Çelik Özer,Orhan Kaan, , , , ,
Abstract
Aim: Deep learning algorithms have lately been used for medical image processing, and they have showed promise in a range of applications. The purpose of this study was to develop and test computer-based diagnostic tools for evaluating masseter muscle segmentation on ultrasonography images. Materials and methods: A total of 388 anonymous adult masseter muscle retrospective ultrasonographic images were evaluated. The masseter muscle was labeled on ultrasonography images using the polygonal type labeling method with the CranioCatch labeling program (CranioCatch, Eskişehir, Turkey). All images were re-checked and verified by Oral and Maxillofacial Radiology experts. This data set was divided into training (n = 312), verification (n = 38) and test (n = 38) sets. In the study, an artificial intelligence model was developed using PyTorch U-Net architecture, which is a deep learning approach. Results: In our study, the artificial intelligence deep learning model known as U-net provided the detection and segmentation of all test images, and when the success rate in the estimation of the images was evaluated, the F1, sensitivity and precision results of the model were 1.0, 1.0 and 1.0, respectively. Conclusion: Artificial intelligence shows promise in automatic segmentation of masseter muscle on ultrasonography images. This strategy can aid surgeons, radiologists, and other medical practitioners in reducing diagnostic time.
Publisher
Medical Communications Sp. z.o.o.
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献