Performance Evaluation of Recurrent Neural Networks Applied to Indoor Camera Localization

Author:

Alam Muhammad S., ,Hossain AKM B.,Mohamed Farhan B.

Abstract

Researchers in robotics and computer vision are experimenting with the image-based localization of indoor cameras. Implementation of indoor camera localization problems using a Convolutional neural network (CNN) or Recurrent neural network (RNN) is more challenging from a large image dataset because of the internal structure of CNN or RNN. We can choose a preferable CNN or RNN variant based on the problem type and size of the dataset. CNN is the most flexible method for implementing indoor localization problems. Despite CNN's suitability for hyper-parameter selection, it requires a lot of training images to achieve high accuracy. In addition, overfitting leads to a decrease in accuracy. Introduce RNN, which accurately keeps input images in internal memory to solve these problems. Longshort-term memory (LSTM), Bi-directional LSTM (BiLSTM), and Gated recurrent unit (GRU) are three variants of RNN. We may choose the most appropriate RNN variation based on the problem type and dataset. In this study, we can recommend which variant is effective for training more speedily and which variant produces more accurate results. Vanishing gradient issues also affect RNNs, making it difficult to learn more data. Overcome the gradient vanishing problem by utilizing LSTM. The BiLSTM is an advanced version of the LSTM and is capable of higher performance than the LSTM. A more advanced RNN variant is GRU which is computationally more efficient than an LSTM. In this study, we explore a variety of recurring units for localizing indoor cameras. Our focus is on more powerful recurrent units like LSTM, BiLSTM, and GRU. Using the Microsoft 7-Scenes and InteriorNet datasets, we evaluate the performance of LSTM, BiLSTM, and GRU. Our experiment has shown that the BiLSTM is more efficient in accuracy than the LSTM and GRU. We also observed that the GRU is faster than LSTM and BiLSTM

Publisher

IJETAE Publication House

Subject

General Earth and Planetary Sciences,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3