Abstract
The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accurate solution for indoor robot navigation. The more accurate solution of the guide robotic system opens a new window of the self-localization system and solves the more complex problem of indoor robot navigation. It makes a reliable interface between humans and robots. This study successfully demonstrated how a robot finds its initial position inside a room. A deep learning system, such as a convolutional neural network, trains the self-localization system as an image classification problem. The robot was placed inside the room to collect images using a panoramic camera. Two datasets were created from the room images based on the height above and below the chest. The above-mentioned method achieved a localization accuracy of 98.98%.
Publisher
College of Science for Women, University of Baghdad
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献