Essential Dynamics of Rice Cultivated under Intensification on Acid Sulfate Soils Ameliorated with Composted Oyster Mushroom Baglog Waste

Author:

Jumar Jumar,Saputra Riza Adrianoor,Nugraha Muhammad Imam,Wahyudianur Ahmad

Abstract

This study examines the dynamics of essential macro-nutrients for rice cultivation in acid sulfate soils ameliorated with composted oyster mushroom baglog waste. A single factor randomized block design (RBD) was used, and the factors studied include the compost dose of oyster mushroom baglog waste, which consists of 5 treatment levels, namely 0 t ha-1 (control), 5 t ha-1, 10 t ha-1, 15 t ha-1, and 20 t ha-1. Furthermore, this study was carried out from May to September 2021 in the rice fields of the Faculty of Agriculture, Lambung Mangkurat University (ULM), Sungai Rangas Village, Banjar Regency, South Kalimantan. The rice plants were cultivated using an intensification technique, and the compost was applied based on the research treatment for two weeks on prepared land before planting. Also, Bartlett’s test was carried out before analysis of variance, which had a significant effect of P<0.05, and was further tested using Duncan’s Multiple Range Test (DMRT) at a 5% level. The results showed variations in the availability of macro-nutrients at five different growth stages: early planting, full vegetative, early panicle emergence, panicle filling, and harvesting phases. The highest levels of ammonium (NH4+) and nitrate (NH3-) were found in the full vegetative stage, while early planting had the lowest. Also, there was an increase in the available phosphorus (P) from the early planting to the full vegetative stage. The increase in exchangeable potassium (K) occurred at the transition of these stages. These increasing nutrients were due to the addition of the compost. The higher the NH4+, NO3-, available P, and exchangeable K in acid sulfate soils, the more nitrogen (N), P, and K uptake in rice plants. The provision of the compost supplied N, P, and K in available forms and reduced the amount of soluble alumunium (Al) and iron (Fe). Thereby the plant roots absorb the nutrients optimally. Additionally, the compost increased the essential macro-nutrient availability and plant uptake using the rice intensification technique from early planting to harvest.

Publisher

Universiti Putra Malaysia

Subject

Plant Science,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3