Microbiological, Phytochemical Constituents, and Antioxidant Properties of Fermented Green Robusta Coffee Beans
-
Published:2024-04-23
Issue:2
Volume:47
Page:359-387
-
ISSN:2231-8542
-
Container-title:Pertanika Journal of Tropical Agricultural Science
-
language:en
-
Short-container-title:JTAS
Author:
Yuan Chan Hao,Rukayadi Yaya,Mohamad Azman Ezzat,Ashaari Rozzamri,Abdul Halim Lim Sarina
Abstract
Robusta coffee is one of Malaysia’s most planted species due to its ability to adapt to the local climate. Nonetheless, the coffee species was perceived as having lower quality and economic value due to bitterness and astringency. It is widely believed that higher caffeine and chlorogenic acid contents in Robusta coffee beans contributed to the unfavourable bitter and astringent flavour. Hence, the present study intends to evaluate the effect of spontaneous wet fermentation (SWF) of locally grown Robusta (<i>Coffea canephora</i> L.) coffee towards the microbiological properties, phytochemical constituents, in particular caffeine and chlorogenic acids (CGA), total phenolic content (TPC), and antioxidant properties. The SWF of green Robusta coffee beans from University Agricultural Park (UAP), Universiti Putra Malaysia, Serdang, Selangor, took place at ambient temperatures between 25 to 28°C, and the pH decreased from 5.2 to 3.64 over five days of fermentation. The total plate count, lactic acid bacteria (LAB) and yeasts were significantly increased to approximately 7 Log10 CFU/g. The SWF has reduced caffeine content by 35%, while the CGA has decreased by roughly 20%. The SWF also led to an increase in TPC of approximately 31.5% and an increase in antioxidant activity of approximately 60%.
Publisher
Universiti Putra Malaysia
Reference68 articles.
1. Abrahão, F. R., Rocha, L. C. R., Santos, T. A., do Carmo, E. L., Pereira, L. A. S., Borges, S. V., Pereira, R. G. F. A., & Botrel, D. A. (2019). Microencapsulation of bioactive compounds from espresso spent coffee by spray drying. LWT, 103, 116–124. https://doi.org/10.1016/j.lwt.2018.12.061 2. Acidri, R., Sawai, Y., Sugimoto, Y., Handa, T., Sasagawa, D., Masunaga, T., Yamamoto, S., & Nishihara, E. (2020). Phytochemical profile and antioxidant capacity of coffee plant organs compared to green and roasted coffee beans. Antioxidants, 9(2), 93. https://doi.org/10.3390/antiox9020093 3. Barbosa, J. N., Borém, F. M., Cirillo, M. A., Malta, M. R., Alvarenga, A. A., & Alves, H. M. R. (2012). Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil. Journal of Agricultural Science, 4(5), 181–190. https://doi.org/10.5539/jas.v4n5p181 4. Bertranda, R. L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology, 201(7), e00697-18. https://doi.org/10.1128/JB.00697-18 5. Bicho, N. C., Leitão, A. E., Ramalho, J. C., & Lidon, F. C. (2011). Identification of chemical clusters discriminators of the roast degree in Arabica and Robusta coffee beans. European Food Research and Technology, 233, 303–311. https://doi.org/10.1007/s00217-011-1518-5
|
|