Soil Element Assessment in Organic Paddy Fields in the Thung Kula Ronghai Zone, Thailand
-
Published:2022-04-11
Issue:2
Volume:45
Page:391-409
-
ISSN:2231-8542
-
Container-title:Pertanika Journal of Tropical Agricultural Science
-
language:en
-
Short-container-title:JTAS
Author:
Kroeksakul Patarapong,Silprasit Kun,Phowan Naphat,Ngamniyom Arin,Singhaboot Pakjirat
Abstract
Organic rice production (ORP) has been promoted as a means of sustaining both farmers and the ecology of paddy fields, so this research aims to evaluate soil properties and soil elements in the ORP and general rice production (GRP) systems in the Thung Kula Ronghai (TKR) zone in Thailand. Soil samples were collected in Roi-et province from fields classified as ORP (5 fields) or GRP (4 fields), and interviews were also conducted with the field owner about rice yield and rice production. Data from the ORP and GRP groups were compared by t-test, and soil enhancement practices were measured by one-way analysis of variance (ANOVA) for variances. Results indicate there were 14 indicators of soil element control in the TKR. All indicators in the ORP and GRP systems were lower than the rate in soil that is suitable for rice production. The macroelement content in the TKR zone was total nitrogen > total potassium > phosphorus available at a ratio of 338: 3: 1, and the soil organic matter (SOM)/soil organic carbon (SOC) ratio is about 3.45. The soil improvement techniques used in the ORP systems—manure only and manure combined with green manure—have a higher pH value (p < 0.05) than the fertilizer only input but a lower TK value (p < 0.05) than the fertilizer only input. As a result, the ORP yield was higher than that of the GRP systems (p < 0.05), greatly affecting farmers’ practices.
Publisher
Universiti Putra Malaysia
Subject
Plant Science,Forestry
Reference50 articles.
1. Araragi, M., Motomura, S., Koyama, T., Matsuguchi, T., Chammek, C., Niamsrichand, N., Tangcham, B., Patiyuth, S., & Seirayosakol, A. (1978). Dynamic behavior of soil nitrogen in paddy field soils of Thailand. JARQ, 12(2), 79-85. 2. Arunrat, N., Kongsurankan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of northeast Thailand: A review. Agronomy, 10(8), 1061. https://doi.org/10.3390/agronomy10081061 3. Atapattu, A. J., Rohtha-Prasantha, B. D., Amaratunga, K. S. P., & Marambe, B. (2018). Increased rate of potassium fertilizer at the time of heading enhances the quality of direct seeded rice. Chemical and Biological Technologies in Agriculture, 5, 22. https://doi.org/10.1186/s40538-018-0136-x 4. Avasthe, R. K., Babu, S., Singh, R., & Das, S. K. (2018). Impact of organic food production on soil quality. In D. Anup, K. P. Mohapatra, S. V. Ngachan, A. S. Panwar, D. J. Rajkhowa, G. I. Ramkrushna, & L. Jayanta (Eds.), Conservation agriculture for advancing food security in changing climate (pp. 409-418). Today and Tomorrow’s Printers and Publishers. 5. Bianchi, R. S., Miyazawa, M., de Oliveira, L. E., & Pavan, A. M. (2008). Relationship between the mass of organic matter and carbon in soil. Brazilian Archives of Biology and Technology, 51(2), 263-269. https://doi.org/10.1590/S1516-89132008000200005
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|