Smoothing RRT Path for Mobile Robot Navigation Using Bio-inspired Optimization Method

Author:

Saleh Izzati,Borhan Nuradlin,Rahiman Wan

Abstract

This research addresses the challenges of using the Rapidly Exploring Random Tree (RRT) algorithm as a mobile robot path planner. While RRT is known for its flexibility and wide applicability, it has limitations, including careful tuning, susceptibility to local minima, and generating jagged paths. The main objective is to improve the smoothness of RRT-generated trajectories and reduce significant path curvature. A novel approach is proposed to achieve these, integrating the RRT path planner with a modified version of the Whale Optimization Algorithm (RRT-WOA). The modified WOA algorithm incorporates parameter variation () specifically designed to optimize trajectory smoothness. Additionally, Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) instead of conventional splines for point interpolation further smoothes the generated paths. The modified WOA algorithm is thoroughly evaluated through a comprehensive comparative analysis, outperforming other popular population-based optimization algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Firefly Algorithm (FA) in terms of optimization time, trajectory smoothness, and improvement from the initial guess. This research contributes a refined trajectory planning approach and highlights the competitive advantage of the modified WOA algorithm in achieving smoother and more efficient trajectories compared to existing methods.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3