Model-driven Approach to Improve Sago Drying with a Fluidized Bed Dryer

Author:

Ali Othman Nur Tantiyani,Senu Nurfadilah Izaty

Abstract

This study presents a model-driven approach to enhance the efficiency of sago drying utilizing a two-dimensional fluidized bed dryer (FBD). ANSYS® DesignModelerTM 2020 R2 software was employed to simulate the drying profile, considering variations in sago bagasse particle diameter (ranging from 500 to 2000 µm), hot air temperature (ranging from 50 to 90 °C), and inlet air velocity (ranging from 1.5 to 2.1 m/s). The simulation results provided valuable insights into the interplay between these critical drying parameters. The model enabled the prediction of moisture content profiles during the sago drying process under different conditions, thereby facilitating comprehension of the system’s behavior. Using Design Expert® 7.00 (DX7), considering energy efficiency and product quality, an optimal set of conditions for sago drying was determined at 2000 µm, 90 °C and 2.1 m/s. This approach not only streamlined the drying process but also significantly reduced energy consumption while ensuring consistent and high-quality sago. The findings of this research offer a practical and sustainable solution for sago producers, which, when applied, can contribute to improved product quality, reduced production costs, and enhanced food security in the region. Furthermore, the model-driven approach and the integration of specialized software tools demonstrate the potential for broader applications in optimizing various drying processes in the food industry.

Publisher

Universiti Putra Malaysia

Reference32 articles.

1. Antony, J., & Shyamkumar, M. B. (2016). Study on sand particles drying in a fluidized bed dryer using CFD. International Journal of Engineering Studies, 8(2), 129-145.

2. Arumuganathan, T., Manikantan, M. R., Ramanathan, M., Rai, R. D., Indurani, C., & Karthiayani, A. (2017). Effect of diffusion channel storage on some physical properties of button mushroom (Agaricus bisporus) and shelf-life extension. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(3), 705-718. https://doi.org/10.1007/s40011-015-0628-4

3. Assawarachan, R. (2013). Drying kinetics of coconut residue in fluidized bed. International Journal of Agriculture Innovations and Research, 2(2), 263–266.

4. Azmir, J., Hou, Q., & Yu, A. (2018). Discrete particle simulation of food grain drying in a fluidised bed. Powder Technology, 323, 238-249. https://doi.org/10.1016/j.powtec.2017.10.019

5. Dechsiri, C. (2004). Particle Transport in Fluidized Beds: Experiments and Stochastic Models. [Unpublished Doctoral thesis]. University of Groningen.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3