Analytical and Numerical Investigation of Free Vibration Behavior for Sandwich Plate with Functionally Graded Porous Metal Core

Author:

Njim Emad Kadum,Bakhy Sadeq H.,Al-Waily Muhannad

Abstract

The current work presents a free vibration analysis of a simply supported rectangular functionally graded sandwich plate using a new analytical model. The core of the sandwich plate is made up of porous metal, and the top and bottom faces are made up of homogenous materials. The core metal properties are assumed to be porosity dependent and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The contribution of this paper is to evaluate the performance of functionally graded porous materials (FGPMs) as it is used for many biomedical applications, particularly in tissue engineering. Theoretical formulations are based on the classical plate theory to find the free vibration characteristics of the imperfect FGM sandwich plate and include different parameters. Parameters included are graded distributions of porosity, power-law index, core metal type, and aspect ratios. A numerical investigation using finite element analysis (FEA) and the modal analysis was conducted with the assistance of the commercial ANSYS-2020-R2 software to validate the analytical solution. To detect the various parameters influencing the fundamental frequencies of sandwich plate comprehensive numerical results are presented in dimensionless tabular and graphical forms. The results reveal that the frequency parameter of the sandwich plate increases with the increase of the porosity parameter and number of the constraints in the boundary conditions. Furthermore, the increase in the number of layers leads to an increase in the accuracy of the results for the same FGM core thickness. An accepted agreement can be observed between the proposed analytical solution and numerical results with a maximum error discrepancy of 8%.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3