Experimental and numerical analysis of uni-axial buckling of single-phase functionally graded porous polymeric sandwich plates

Author:

Njim Emad K.,Almamuri Mohammad H.,Bakhy Sadeq H.,Idan Zainab S.,Al-Waily Muhannad,Jweeg Mohsen J.,Hadji L.

Abstract

The porosity gradient functionally graded material (PFGM) is one of the most popular types of FGM, in which the porosity in the material is made to change in the specified direction. This study looks into the buckling problems of rectangular sandwich plates made of single-phase porous functionally graded materials (PFGMs), commonly used in aircraft structures and biomedical applications. A compression test was performed on the 3D-printed polymeric FG specimens bonded with two thin solid face sheets on the upper and lower surfaces. The critical stress of well-designed and fabricated 3D printed FGM plate samples with various metal core types is determined using a PC installed on universal testing equipment (UTM). The effect of different essential parameters (such as porous ratio, gradient exponent, and aspect ratio) on buckling load and total deformation were explored.The finite element method (FEM) was used to run a numerical simulation on elastic buckling using ANSYS 2021 R1 software to validate the experimental results. The load-displacement relationships and deformed morphologies were investigated using experiments and numerical analysis. The topology arrangement and relative density of the polymer core were examined using the SEM micro-tomography test based on porosity distribution to check the resistance of the sandwich to buckling load. PETG/Al sandwich plates have been found to have critical buckling loads that are 2.52 % higher than PLA/Al sandwich plates, while TPU/Al sandwich plates show increased essential loads of buckling of 5.139 %. The FEM and experiment results show that the existence of porosity in the PLA core in the PFGM plate can reduce the buckling strength tremendously, about 10.52% and 6.8 %, respectively. It was evident that the numerical results show a good agreement with the experimental findings, with a maximum discrepancy of no more than 12 % occurring at the (TPU/Al) sandwich plate with a porosity of 30%.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3