Mobile Application Development for Spectral Signature of Weed Species in Rice Farming

Author:

Roslin Nor Athirah,Che’Ya Nik Norasma,Sulaiman Nursyazyla,Alahyadi Lutfi Amir Nor,Ismail Mohd Razi

Abstract

Weed infestation happens when there is intense competition between rice and weeds for light, nutrients and water. These conditions need to be monitored and controlled to lower the growth of weeds as they affected crops production. The characteristics of weeds and rice are challenging to differentiate macroscopically. However, information can be acquired using a spectral signature graph. Hence, this study emphasises using the spectral signature of weed species and rice in a rice field. The study aims to generate a spectral signature graph of weeds in rice fields and develop a mobile application for the spectral signature of weeds. Six weeds were identified in Ladang Merdeka using Fieldspec HandHeld 2 Spectroradiometer. All the spectral signatures were stored in a spectral database using Apps Master Builder, viewed using smartphones. The results from the spectral signature graph show that the jungle rice (Echinochloa spp.) has the highest near-infrared (NIR) reflectance. In contrast, the saromacca grass (Ischaemum rugosum) shows the lowest NIR reflectance. Then, the first derivative (FD) analysis was run to visualise the separation of each species, and the 710 nm to 750 nm region shows the highest separation. It shows that the weed species can be identified using spectral signature by FD analysis with accurate separation. The mobile application was developed to provide information about the weeds and control methods to the users. Users can access information regarding weeds and take action based on the recommendations of the mobile application.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3