Detection of Sedge Weeds Infestation in Wetland Rice Cultivation Using Hyperspectral Images and Artificial Intelligence: A Review

Author:

Abd Manaf Muhamad Noor Hazwan,Juraimi Abdul Shukor,Motmainna Mst.,Che’Ya Nik Norasma,Mat Su Ahmad Suhaizi,Mohd Roslim Muhammad Huzaifah,Ahmad Anuar,Mohd Noor Nisfariza

Abstract

Sedge is one type of weed that can infest the rice field, as well as broadleaf and grasses. If sedges are not appropriately controlled, severe yield loss will occur due to increased competition with cultivated rice for light, space, nutrients, and water. Both sedges and grasses are monocots and have similar narrowed leaf characteristics, but most sedge stems have triangular prismatic shapes in cross sections, which differ them from grasses. Event sedges and grasses differ in morphology, but differentiating them in rice fields is challenging due to the large rice field area and high green color similarity. In addition, climate change makes it more challenging as the distribution of sedge weed infestation is influenced by surrounding abiotic factors, which lead to changes in weed control management. With advanced drone technology, agriculture officers or scientists can save time and labor in distributing weed surveys in rice fields. Using hyperspectral sensors on drones can increase classification accuracy and differentiation between weed species. The spectral signature of sedge weed species captured by the hyperspectral drone can generate weed maps in rice fields to give the sedge percentage distribution and location of sedge patch growth. Researchers can propose proper countermeasures to control the sedge weed problem with this information. This review summarizes the advances in our understanding of the hyperspectral reflectance of weedy sedges in rice fields. It also discusses how they interact with climate change and phenological stages to predict sedge invasions.

Publisher

Universiti Putra Malaysia

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3