Wastewater from Washed Rice Water as Plant Nutrient Source: Current Understanding and Knowledge Gaps

Author:

Abba Nabayi,Sung Christopher Teh Boon,Paing Tan Ngai,Zuan Ali Tan Kee

Abstract

A significant wastewater source in every household is washed rice water (WRW) because it contains leached nutrients (from washing the rice prior to cooking) that could be used as fertilizer. The paper reviewed the current understanding of the potential use of WRW as a plant nutrient source. WRW was shown to increase vegetables growth, such as water spinach, pak choy, lettuce, mustard, tomato, and eggplant. Different researchers have used various amounts of WRW, and their results followed a similar trend: the higher the amount of WRW, the higher the plant growth. WRW has also been used for other purposes, such as a source of carbon for microbial growth. WRW from brown rice and white rice had nutrients ranging from 40-150, 43-16306, 51-200, 8-3574, 36-1425, 27-212, and 32-560 mg L-1 of N, P, K, Ca, Mg, S, and vitamin B1 (thiamine), respectively. Proper utilization of WRW could reduce chemical fertilizer use and prevent both surface and groundwater contamination and environmental pollution. However, only a few of the studies have compared the use of WRW with the use of conventional NPK fertilizer. The major drawback of WRW studies is that they lack depth and scope, such as determining the initial and (or) final soil physico-chemical properties or plant nutrient contents. Considering the rich nutrient content in WRW, it will impact plant growth and soil fertility when used as both irrigation water and plant nutrient source. Therefore, it is recommended that studies on WRW effect on soil microbial population, plant, and soil nutrient contents to be carried out to ascertain the sustainability of WRW use as a plant nutrient source.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference117 articles.

1. Abbas, A., Murtaza, S., Aslam, F., Khawar, A., Rafique, S., & Naheed, S. (2011). Effect of processing on nutritional value of rice (Oryza sativa). World Journal of Medical Sciences, 6(2), 68-73.

2. Aghtape, A. A., Ghanbari, A., Sirousmehr, A., Siahsar, B., Asgharipour, M., & Tavssoli, A. (2011). Effect of irrigation with wastewater and foliar fertilizer application on some forage characteristics of foxtail millet (Setaria italica). International Journal of Plant Physiology and Biochemistry, 3(3), 34-42.

3. Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King saud University-science, 26(1), 1-20. http://dx.doi.org/10.1016/j.jksus.2013.05.001

4. Akib, M. A., Setiawaty, H., Haniarti, H., & Sulfiah, S. (2015). Improving the quality of “Leri” rice washing waste by different period of fermentation and yeast concentration as an alternative liquid organic fertilizer. International Journal of Agriculture System, 2(2), 153-162. http://dx.doi.org/10.20956/ijas.v2i2.31

5. Amalia, N., & Chitra, A. (2018). The effect of application of rice dishwater and manure as organic fertilizer to the growth of mustard (Brassica juncea L.). Agroland: Agricultural Science Journal, 5(2), 74-82.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3