Forecasting Geo Location of COVID-19 Herd

Author:

Agarwal Divyansh,Patnaik Nishita,Harinarayanan Aravind,Senthilkumar Sudha,Krishnamurthy Brindha,Srinivasan Kathiravan

Abstract

Thanks to the growth in data storage capacity, nowadays, researchers can use years’ worth of mathematical models and depend on past datasets. A pattern of all pandemics can be identified through the assistance of Machine Learning. The movement of the COVID-19 herd and any future pandemic can be predicted. These predictions will vary based on the dataset, but it will allow the preparation beforehand and stop the spreading of COVID-19. This study focuses on developing Spatio-temporal models using Machine Learning to produce a predictive visualized heat regional map of COVID-19 worldwide. Different models of Machine Learning are compared using John Hopkins University dataset. This study has compared well-known basic models like Support Vector Machine (SVM), Prophet, Bayesian Ridge Regression, and Polynomial Regression. Based on the comparison of various metrics of the Support Vector Machine, Polynomial Regression Model was found to be better and hence can be assumed to give good results for long-term prediction. On the other hand, ARIMA, Prophet Model, and Bayesian Ridge Reduction models are good for short-term predictions. The metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Square Error (RMSE) are better for Support Vector Machines compared to other models. The metrics such as R2 Score and Adjusted R-Square are better for the polynomial Regression model.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference33 articles.

1. Aarthi, A. D., & Gnanappazham, L. (2018). Urban growth prediction using neural network coupled agents-based cellular automata model for Sriperumbudur taluk, Tamil Nadu, India. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 353-362. https://doi.org/10.1016/j.ejrs.2017.12.004

2. Abedini, M., Ghasemyan, B., & Rezaei Mogaddam, M. H. (2017). Landslide susceptibility mapping in Bijar city, Kurdistan province, Iran: A comparative study by logistic regression and AHP models. Environmental Earth Sciences, 76(8), Article 308. https://doi.org/10.1007/s12665-017-6502-3

3. Allwood, B. W., Koegelenberg, C. F., Ngah, V. D., Sigwadhi, L. N., Irusen, E. M., Lalla, U., Yalew, A., Tamuzi, J. L., McAllister, M., Zemlin, A. E., Jalavu, T. P., Erasmus, R., Chapanduka, Z. C., Matsha, T. E., Fwemba, I., Zumla, A., & Nyasulu, P. S. (2022). Predicting COVID-19 outcomes from clinical and laboratory parameters in an intensive care facility during the second wave of the pandemic in South Africa. IJID Regions, 3, 242-247. https://doi.org/10.1016/j.ijregi.2022.03.024

4. Arabi, Y. M., Murthy, S., & Webb, S. (2020). COVID-19: A novel coronavirus and a novel challenge for critical care. Intensive Care Medicine, 46(5), 833-836. https://doi.org/10.1007/s00134-020-05955-1

5. Bae, S., Sung, E., & Kwon, O. (2021). Accounting for social media effects to improve the accuracy of infection models: Combatting the COVID-19 pandemic and infodemic. European Journal of Information Systems, 30(3), 342-355. https://doi.org/10.1080/0960085x.2021.1890530

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COVID-19 trends across borders: Identifying correlations among countries;Journal of International Medical Research;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3