Hyper heuristic particle swarm optimization method for medical images segmentation

Author:

El-Khatib S.1,Skobtsov Y.A.2,Rodzin S.I.1

Affiliation:

1. Southern Federal University, Rostov-on-Don, Russia

2. St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia

Abstract

Purpose. Development of new methods for medical images segmentation, since modern methods of medical diagnostics are largely based on image processing MRI, CT scan etc. Materials and Methods. A hybrid particle swarm algorithm for medical image segmentation is proposed, which includes a modified and elite exponential particle swarm segmentation algorithm in combination with the k-means method. The time complexity of the developed algorithm is investigated on the basis of the drift analysis. It is shown that the developed algorithm for segmentation of MRI images has a polynomial time complexity. Results. To test the developed algorithms, images of the Ossirix test set and real medical images were used. When comparing the operating time of the proposed segmentation methods, it was found that the hyper-heuristic swarm method shows the operating time on average 2 times less than when using the hybrid ant method, and the segmentation results for good quality images and blurry images are comparable. Conclusions. Several modifications of swarm image segmentation algorithms have been proposed for various types of medical images, including contrasting, noisy and blurred images, which showed good results during testing and low time complexity.

Funder

Russian Foundation for Basic Research

Publisher

Informatization and Communication Journal Editorial Board

Subject

General Agricultural and Biological Sciences

Reference14 articles.

1. Родзин С.И., Скобцов Ю.А., Эль-Хатиб С.А. Биоэвристики: теория, алгоритмы и приложения: монография. – Чебоксары: ИД «Среда», 2019. – 224 с.

2. Скобцов Ю.А., Сперанский Д.В. Эволюционные вычисления: учебное пособие. М.:Национальный Открытый Университет «ИНТУИТ» 2015, 331с.

3. El-Khatib S., Rodzin S., Skobtcov Y. Investigation of Optimal Heuristical Parameters for Mixed ACO-k-means Segmentation Algorithm for MRI Images // Proceedings of III International Scientific Conference on Information Technologies in Science, Management, Social Sphere and Medicine (ITSMSSM 2016). – ISBN (on-line): 978-94-6252-196-4. Part of series Advances in Computer Science Research. – Vol. 51. – [Published by Atlantis Press], 2016. – P. 216–221. DOI:10.2991/itsmssm-16.2016.72

4. El-Khatib S., Skobtsov Y., Rodzin S. Theoretical and experimental evaluation of hybrid ACO-k-means image segmentation algorithm for MRI images using drift-analysis // Proceedings of ХIII International Symposium «Intelligent Systems – 2018» (INTELS’18), St Petersburg, Russia, 22-24 Oct 2018, Procedia Computer Science, p.1-9.

5. El-Khatib S. Modified exponential particle swarm optimization algorithm for medical image segmentation. // Proceedings of XIX International Conference on Soft Computing and Measurements (SCM 2016). – St. Petersburg (25-27 May 2016). – Vol. 1 – pp. – 513-516.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Concise Overview of Particle Swarm Optimization Methods;Вестник КРАУНЦ. Физико-математические науки;2022-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3