Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase.

Author:

Eppenberger-Eberhardt M1,Riesinger I1,Messerli M1,Schwarb P1,Müller M1,Eppenberger H M1,Wallimann T1

Affiliation:

1. Institute of Cell Biology, Swiss Federal Institute of Technology, Zürich.

Abstract

In adult regenerating cardiomyocytes in culture, in contrast to fetal cells, mitochondrial creatine kinase (Mi-CK) was expressed. In the same cell, two populations of mitochondria, differing in shape, in distribution within the cell and in content of Mi-CK, could be distinguished. Immunofluorescence studies using antibodies against Mi-CK revealed a characteristic staining pattern for the two types of mitochondria: giant, mostly cylindrically shaped, and, as shown by confocal laser light microscopy, randomly distributed mitochondria exhibited a strong signal for Mi-CK, whereas small, "normal" mitochondria, localized in rows between myofibrils, gave a much weaker signal. Transmission EM of the giant mitochondria demonstrated paracrystalline inclusions located between cristae membranes. Immunogold labeling with anti-Mi-CK antibodies revealed a specific decoration of these inclusions for Mi-CK. Addition of 20 mM creatine, the substrate of Mi-CK, to the essentially creatine-free culture medium caused the disappearance of the giant cylindrically shaped mitochondria as well as of the paracrystalline inclusions, accompanied by an increase of the intracellular level of total creatine. Replacement of creatine in the medium by the creatine analogue and competitor beta-guanidinopropionic acid caused the reappearance of the enlarged mitochondria. It is believed that the accumulation of Mi-CK within the paracrystalline inclusions, similar to those observed in certain myopathies, represents a compensatory effect of the cardiomyocytes to cope with a metabolic stress situation caused by low intracellular total creatine levels.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3