Altered rate of fibronectin matrix assembly by deletion of the first type III repeats.

Author:

Sechler J L1,Takada Y1,Schwarzbauer J E1

Affiliation:

1. Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.

Abstract

The assembly of fibronectin (FN) into a fibrillar matrix is a complex stepwise process that involves binding to integrin receptors as well as interactions between FN molecules. To follow the progression of matrix formation and determine the stages during which specific domains function, we have developed cell lines that lack an endogenous FN matrix but will form fibrils when provided with exogenous FN. Recombinant FNs (recFN) containing deletions of either the RGD cell-binding sequence (RGD-) or the first type III repeats (FN delta III1-7) including the III1 FN binding site were generated with the baculovirus insect cell expression system. After addition to cells, recFN matrix assembly was monitored by indirect immunofluorescence and by insolubility in the detergent deoxycholate (DOC). In the absence of any native FN, FN delta III1-7 was assembled into fibrils and was converted into DOC-insoluble matrix. This process could be inhibited by the amino-terminal 70 kD fragment of FN, showing that FN delta III1-7 follows an assembly pathway similar to FN. The progression of FN delta III1-7 assembly differed from native FN in that the recFN became DOC-insoluble more quickly. In contrast, RGD- recFNs were not formed into fibrils except when added in combination with native FN. These results show that the RGD sequence is essential for the initiation step but fibrils can form independently of the III1-7 modules. The altered rate of FN delta III1-7 assembly suggests that one function of the missing repeats might be to modulate an early stage of matrix formation.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3