Role of Bud3p in producing the axial budding pattern of yeast.

Author:

Chant J1,Mischke M1,Mitchell E1,Herskowitz I1,Pringle J R1

Affiliation:

1. Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

Abstract

Yeast cells can select bud sites in either of two distinct spatial patterns. a cells and alpha cells typically bud in an axial pattern, in which both mother and daughter cells form new buds adjacent to the preceding division site. In contrast, a/alpha cells typically bud in a bipolar pattern, in which new buds can form at either pole of the cell. The BUD3 gene is specifically required for the axial pattern of budding: mutations of BUD3 (including a deletion) affect the axial pattern but not the bipolar pattern. The sequence of BUD3 predicts a product (Bud3p) of 1635 amino acids with no strong or instructive similarities to previously known proteins. However, immunofluorescence localization of Bud3p has revealed that it assembles in an apparent double ring encircling the mother-bud neck shortly after the mitotic spindle forms. The Bud3p structure at the neck persists until cytokinesis, when it splits to yield a single ring of Bud3p marking the division site on each of the two progeny cells. These single rings remain for much of the ensuing unbudded phase and then disassemble. The Bud3p rings are indistinguishable from those of the neck filament-associated proteins (Cdc3p, Cdc10p, Cdc11p, and Cdc12p), except that the latter proteins assemble before bud emergence and remain in place for the duration of the cell cycle. Upon shift of a temperature-sensitive cdc12 mutant to restrictive temperature, localization of both Bud3p and the neck filament-associated proteins is rapidly lost. In addition, a haploid cdc11 mutant loses its axial-budding pattern upon shift to restrictive temperature. Taken together, the data suggest that Bud3p and the neck filaments are linked in a cycle in which each controls the position of the other's assembly: Bud3p assembles onto the neck filaments in one cell cycle to mark the site for axial budding (including assembly of the new ring of neck filaments) in the next cell cycle. As the expression and localization of Bud3p are similar in a, alpha, and a/alpha cells, additional regulation must exist such that Bud3p restricts the position of bud formation in a and alpha cells but not in a/alpha cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3