Characterization of Bud3 domains sufficient for bud neck targeting in S. cerevisiae

Author:

Schrock Madison N.12ORCID,Yan Yao2,Goeckel Megan E.32,Basgall Erianna M.42ORCID,Lewis Isabel C.52,Leonard Katherine G.62,Halloran Megan72,Finnigan Gregory C.2ORCID

Affiliation:

1. Present address: School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA

2. Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506 USA

3. Present address: Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St Louis, MO, 63110, USA

4. Present address: Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA

5. Present address: School of Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA

6. Present address: Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA

7. Present address: Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA

Abstract

The cytoskeleton serves a diverse set of functions in both multi- and unicellular organisms, including movement, transport, morphology, cell division and cell signalling. The septin family of cytoskeletal proteins are found within all fungi and metazoans and can generate three-dimensional scaffolds in vivo that promote membrane curvature, serve as physical barriers and coordinate cell cycle checkpoints. In budding yeast, the septins organize into polymerized filaments that decorate the division site between mother and daughter cells during mitosis; assembly of this structure at the ‘bud neck’ is critical for completion of cytokinesis and execution of numerous other cellular events. One such pathway includes bud site selection and the recruitment of proteins such as Bud4 and Bud3 that are responsible for promoting an axial budding pattern in haploid yeast. While Bud4 appears to be recruited to the septins independently of the presence of Bud3, it is likely that Bud3 can localize to the bud neck using both Bud4-dependent and Bud4-independent mechanisms. Furthermore, it remains unclear which precise domain or domains within Bud3 is/are both necessary and sufficient for optimal association at the septin structure. In this study, we examined the localization of GFP-Bud3 constructs in otherwise wild-type (WT) haploid yeast cells expressing Cdc10-mCherry using fluorescence microscopy; we tested a collection of N- and C-terminal truncations and fusions of separate Bud3 protein elements to identify the smallest domain(s) responsible for bud neck localization. We found that the coordinate action of the central amphipathic helix (residues 847–865) and a partially conserved C-terminal motif (residues 1172–1273) was sufficient to promote bud neck recruitment in the presence of endogenous Bud3. This domain is considerably smaller than the previously characterized C-terminal portion required to physically interact with Bud4 (1221–1636) and utilizes a similar mechanism of pairing membrane association, with a separate localization domain, similar to other non-septin proteins targeted to the division site during cell division.

Funder

National Institute of General Medical Sciences

National Institute of Food and Agriculture

Publisher

Microbiology Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3