CEP55 promotes cilia disassembly through stabilizing Aurora A kinase

Author:

Zhang Yu-Cheng1,Bai Yun-Feng1,Yuan Jin-Feng1,Shen Xiao-Lin1,Xu Yu-Ling1,Jian Xiao-Xiao1,Li Sen1,Song Zeng-Qing1,Hu Huai-Bin1,Li Pei-Yao12,Tu Hai-Qing1,Han Qiu-Ying1,Wang Na1,Li Ai-Ling1,Zhang Xue-Min1,Wu Min1,Zhou Tao1,Li Hui-Yan13ORCID

Affiliation:

1. State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China

2. School of Medicine, Tsinghua University, Beijing, China

3. School of Basic Medical Sciences, Fudan University, Shanghai, China

Abstract

Primary cilia protrude from the cell surface and have diverse roles during development and disease, which depends on the precise timing and control of cilia assembly and disassembly. Inactivation of assembly often causes cilia defects and underlies ciliopathy, while diseases caused by dysfunction in disassembly remain largely unknown. Here, we demonstrate that CEP55 functions as a cilia disassembly regulator to participate in ciliopathy. Cep55−/− mice display clinical manifestations of Meckel–Gruber syndrome, including perinatal death, polycystic kidneys, and abnormalities in the CNS. Interestingly, Cep55−/− mice exhibit an abnormal elongation of cilia on these tissues. Mechanistically, CEP55 promotes cilia disassembly by interacting with and stabilizing Aurora A kinase, which is achieved through facilitating the chaperonin CCT complex to Aurora A. In addition, CEP55 mutation in Meckel–Gruber syndrome causes the failure of cilia disassembly. Thus, our study establishes a cilia disassembly role for CEP55 in vivo, coupling defects in cilia disassembly to ciliopathy and further suggesting that proper cilia dynamics are critical for mammalian development.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

National Key Research and Development Program

National Major Science and Technology Projects of China

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3