Molecular Pathogenic Mechanisms of IgA Nephropathy Secondary to COVID-19 mRNA Vaccination
-
Published:2024-02-01
Issue:
Volume:
Page:
-
ISSN:1420-4096
-
Container-title:Kidney and Blood Pressure Research
-
language:en
-
Short-container-title:Kidney Blood Press Res
Author:
Wang Luoyi,Mao Zhaomin,Zhang Lirong,Shao Fengmin
Abstract
Introduction: Accumulating evidence has disclosed that IgA nephropathy (IgAN) could present shortly after the second dose of COVID-19 mRNA vaccine. However, the undying mechanism remains unclear and we aimed to investigate the potential molecular mechanisms.
Methods: We downloaded gene expression datasets of COVID-19 mRNA vaccination (GSE201535) and IgAN (GSE104948). Weighted Gene Co-Expression Network Analysis (WGCNA) was performed to identify co-expression modules related to the second dose of COVID-19 mRNA vaccination and IgAN. Differentially expressed genes (DEGs) were screened, and a transcription factor (TF)-miRNA regulatory network and protein-drug interaction were constructed for the shared genes.
Results: WGCNA identified one module associated with the second dose of COVID-19 mRNA vaccine and four modules associated with IgAN. Gene Ontology (GO) analyses revealed enrichment of cell cycle-related processes for the COVID-19 mRNA vaccine hub genes and immune effector processes for the IgAN hub genes. We identified 74 DEGs for the second dose of COVID-19 mRNA vaccine and 574 DEGs for IgAN. Intersection analysis with COVID-19 vaccine-related genes led to the identification of two shared genes, TOP2A and CEP55. The TF-miRNA network analysis showed that hsa-miR-144 and ATF1 might regulate the shared hub genes.
Conclusions: This study provides insights into the common pathogenesis of COVID-19 mRNA vaccination and IgAN. The identified pivotal genes may offer new directions for further mechanistic studies of IgAN secondary to COVID-19 mRNA vaccination.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献