THE GEOMETRY OF PERIPHERAL MYELIN SHEATHS DURING THEIR FORMATION AND GROWTH IN RAT SCIATIC NERVES

Author:

Webster Henry deF.1

Affiliation:

1. From the Laboratory of Neuropathology and Neuroanatomical Sciences, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014

Abstract

In rat sciatic nerves, a small bundle of fibers was identified in which myelin sheaths were absent at birth, appeared within 3 days, and grew rapidly for 2 wk. During this interval, nerves were removed from littermates and were sectioned serially in the transverse plane. Alternating sets of thin and thick sections were used to prepare electron micrograph montages in which single myelinating axons could be identified and traced distally. During the formation of the first spiral turn, the mesaxon's length and configuration varied when it was studied at different levels in the same Schwann cell. The position of the mesaxon's termination shifted while its origin, at the Schwann cell surface, remained relatively constant. Along myelin internodes composed of two to six spiral turns, there were many variations in the number of lamellae and their contour. Near the mesaxon's origin, longitudinal strips of cytoplasm separated the myelin layers. Thicker sheaths were larger in circumference, more circular in transverse sections, and more uniform at different levels. Irregularities were confined to the paranodal region, and separation of lamellae by cytoplasm occurred at Schmidt-Lantermann clefts. Approximate dimensions of the bundle, its largest fibers, and their myelin sheaths were measured and calculated. The myelin membrane's transverse length and area increased exponentially with time; the growth rate increased rapidly during the formation of the first four to six spiral layers and remained relatively constant during the subsequent enlargement of the compact sheath.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 291 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3