Regulation of synthesis of the photosystem I reaction center.

Author:

Vierling E,Alberte R S

Abstract

The in vivo biosynthesis of the P700 chlorophyll a-apoprotein was examined to determine whether this process is light regulated and to determine its relationship to chlorophyll accumulation during light-induced chloroplast development in barley (Hordeum vulgare L.). Rabbit antibodies to the 58,000-62,000-mol-wt apoprotein were used to measure relative synthesis rates by immunoprecipitation of in vivo labeled leaf proteins and to detect apoprotein accumulation on nitrocellulose protein blots. 5-d-old, dark-grown barley seedlings did not contain, or show net synthesis of, the 58,000-62,000-mol-wt polypeptide. When dark-grown barley seedlings were illuminated, net synthesis of the apoprotein was observed within the first 15 min of illumination and accumulated apoprotein was measurable after 1 h. After 4 h, P700 chlorophyll a-apoprotein biosynthesis accounted for up to 10% of the total cellular membrane protein synthesis. Changes in the rate of synthesis during chloroplast development suggest coordination between production of the 58,000-62,000-mol-wt polypeptide and the accumulation of chlorophyll. However, when plants were returned to darkness after a period of illumination (4 h) P700 chlorophyll a-apoprotein synthesis continued for a period of hours though at a reduced rate. Thus we found that neither illumination nor the rate of chlorophyll synthesis directly control the rate of apoprotein synthesis. The rapidity of the light-induced change in net synthesis of the apoprotein indicates that this response is tightly coupled to the primary events of light-induced chloroplast development. The data also demonstrate that de novo synthesis of the apoprotein is required for the onset of photosystem I activity in greening seedlings.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3