PERMEABILITY OF MICROSOMAL MEMBRANES ISOLATED FROM RAT LIVER

Author:

Nilsson Robert1,Peterson Elisabeth1,Dallner Gustav1

Affiliation:

1. From the Departments of Biochemistry and Radiobiology, University of Stockholm, and the Department of Pathology at Sabbatsberg Hospital, Karolinska Institutet, Stockholm, Sweden

Abstract

Water compartments, permeability, and the possible active translocation of various substances in rat liver microsomes were studied by using radioactive compounds and ultracentrifugation. The total water of the microsomal pellet, 3.4 µl/mg dry weight, is the sum of water in the extramicrosomal and intramicrosomal spaces, or 56 and 44%, respectively. Sucrose space accounts for 77% of the intramicrosomal water and the hydration water ∼ 14%, leaving almost no sucrose-impermeable space when using the ultracentrifugation approach. With increasing sucrose concentration, microsomes do not show an osmotic response. The intramicrosomal water decreases greatly in the presence of Cs+ and Mg++ in rough but not in smooth microsomes. Uncharged substances of molecular weight of up to at least 600 freely penetrate microsomal membranes, which already become impermeable to charged substances at a molecular weight of 90. These substances also induce an osmotic response. The vesicles can be made permeable to charged substances after water treatment and cooling, which, however, does not increase glucose-6-phosphatase and inosine diphosphatase (IDPase) activities, and these enzymes can still be activated by deoxycholate. IDPase, reduced nicotinamide adenine dinucleotide-cytochrome c reductase, and reduced nicotinamide adenine dinucleotide phosphate-dependent hydroxylation reactions, performed in vitro, also disproved the hypothesis of an accumulation of charged substances inside of vesicles of being a major pathway. The products of the enzymic reactions as well as the glucuronidated form of a hydroxylated product can be recovered on the cytoplasmic side of membranes, and little accumulation occurs in the intravesicular compartment.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3