IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis

Author:

Bakkar Nadine12,Wang Jingxin1,Ladner Katherine J.1,Wang Huating1,Dahlman Jason M.1,Carathers Micheal1,Acharyya Swarnali1,Rudnicki Michael A.3,Hollenbach Andrew D.4,Guttridge Denis C.125

Affiliation:

1. Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics

2. Molecular, Cellular, and Developmental Biology Graduate Program,

3. Molecular Medicine Program, Ottawa Health Research Institute, Ottawa K1Y 4E9, Ontario, Canada

4. Department of Genetics, Louisiana State University, New Orleans, LA 70112

5. Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210

Abstract

Nuclear factor κB (NF-κB) is involved in multiple skeletal muscle disorders, but how it functions in differentiation remains elusive given that both anti- and promyogenic activities have been described. In this study, we resolve this by showing that myogenesis is controlled by opposing NF-κB signaling pathways. We find that myogenesis is enhanced in MyoD-expressing fibroblasts deficient in classical pathway components RelA/p65, inhibitor of κB kinase β (IKKβ), or IKKγ. Similar increases occur in myoblasts lacking RelA/p65 or IKKβ, and muscles from RelA/p65 or IKKβ mutant mice also contain higher fiber numbers. Moreover, we show that during differentiation, classical NF-κB signaling decreases, whereas the induction of alternative members IKKα, RelB, and p52 occurs late in myogenesis. Myotube formation does not require alternative signaling, but it is important for myotube maintenance in response to metabolic stress. Furthermore, overexpression or knockdown of IKKα regulates mitochondrial content and function, suggesting that alternative signaling stimulates mitochondrial biogenesis. Together, these data reveal a unique IKK/NF-κB signaling switch that functions to both inhibit differentiation and promote myotube homeostasis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3