Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent.

Author:

Tilney L G,Egelman E H,DeRosier D J,Saunder J C

Abstract

A comparison of hair cells from different parts of the cochlea reveals the same organization of actin filaments; the elements that vary are the length and number of the filaments. Thin sections of stereocilia reveal that the actin filaments are hexagonally packed and from diffraction patterns of these sections we found that the actin filaments are aligned such that the crossover points of adjacent actin filaments are in register. As a result, the cross-bridges that connect adjacent actin filaments are easily seen in longitudinal sections. The cross-bridges appear as regularly spaced bands that are perpendicular to the axis of the stereocilium. Particularly interesting is that, unlike what one might predict, when a stereocilium is bent or displaced, as might occur during stimulation by sound, the actin filaments are not compressed or stretched but slide past one another so that the bridges become tilted relative to the long axis of the actin filament bundle. In the images of bent bundles, the bands of cross-bridges are then tilted off perpendicular to the stereocilium axis. When the stereocilium is bent at its base, all cross-bridges in the stereocilium are affected. Thus, resistance to bending or displacement must be property of the number of bridges present, which in turn is a function of the number of actin filaments present and their respective lengths. Since hair cells in different parts of the cochlea have stereocilia of different, yet predictable lengths and widths, this means that the force needed to displace the stereocilia of hair cells located at different regions of the cochlea will not be the same. This suggests that fine tuning of the hair cells must be a built-in property of the stereocilia. Perhaps its physiological vulnerability may result from changes of stereociliary structure.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3