Calcium-induced quiescence in reactivated sea urchin sperm.

Author:

Gibbons B H,Gibbons I R

Abstract

Sperm flagella of the sea urchin Tripneustes gratilla beat with asymmetrical bending waves after demembranation with Triton X-100 in the presence of EGTA and reactivation at pH 8.1 with 1 mM ATP in the presence of 2 mM MgSO4. Addition of 0.1--0.2 mM free Ca2+ to these reactivated sperm induces 70--95% of them to become quiescent. This quiescence can be reversed by reduction of the free Ca2% concentration with EGTA, or by dilution to reduce the MgATP2- concentration below 0.3 mM. The quiescent waveform is characterized by a sharp principal bend of approximately 5.6 rad in the proximal region of the flagellum, a slight reverse bend in the midregion that averages approximately 0.3 rad, and a principal bend of approximately 1.1 rad in the tip. The quiescent sperm are highly fragile mechanically, and disruption, including microtubule sliding, occurs spontaneously at a slow rate upon standing or immediately upon gentle agitation. Mild digestion by trypsin causes a gradual appearance of normal, symmetrical flagellar beating. Addition of increasing concentrations of vanadate to quiescent sperm causes a graded decrease in the proximal bend angle, with 50 micrometers vanadate reducing it to approximately 2.6 rad. In the presence of 0.1 mM free Ca2% and 10 micrometers vanadate, a characteristic, crescented stationary bend is induced in the demembranated sperm, without intermediate oscillatory beating, by the addition of either 0.1 or 1 mM ATP. In the absence of vanadate, these two concentrations of ATP produce asymmetric beating and quiescence, respectively. The results support the hypothesis that quiescence in live sperm is induced by an elevated concentration of intracellular Ca2%. In addition, they demonstrate that bending can occur in flagella in which oscillatory beating is inhibited and emphasize the close relationship between asymmetric beating and quiescence.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3