Calaxin is essential for the transmission of Ca2+-dependent asymmetric waves in sperm flagella

Author:

Shiba KogikuORCID,Baba Shoji A,Fujiwara Eiji,Inaba KazuoORCID

Abstract

ABSTRACTRegulation of waveform asymmetry in sperm flagella is critical for changes in sperm swimming trajectory as seen during sperm chemotaxis towards eggs. Ca2+ is known as an important regulator of asymmetry in flagellar waveforms. A calcium sensor protein, calaxin, which is associated with the outer arm dynein, plays a key role in the sperm waveform regulation in a Ca2+-dependent manner. However, the molecular mechanism underlying the regulation of asymmetric waves by Ca2+ and calaxin remains unclear. We performed experiments using caged ATP to elucidate the formation and propagation of asymmetric flagellar waves in the sperm of the ascidian Ciona intestinalis. Demembranated sperm cells were suspended in a solution containing caged ATP and reactivated using UV flash photolysis. Initial bends were formed at the base and propagated towards the tip of flagella; however, the bend direction was different between asymmetric and symmetric waves. A calaxin inhibitor, repaglinide, had no effect on initial bend formation, but significantly inhibited the generation of the second flagellar bend in the reverse direction, resulting in the failure of asymmetric wave formation and propagation. These results suggest that calaxin plays a critical role in Ca2+-dependent transmission of flagellar asymmetric waveforms.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3